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Direct numerical simulation of a turbulent channel flow in a periodic domain of rela-
tively wide spanwise extent, but minimal streamwise length, is carried out at Reynolds
numbers Reτ = 137 and 349. The large-scale structures previously observed in studies
of turbulent channel flow using huge computational domains are also shown to exist
even in the streamwise-minimal channels of the present study. Moreover, the limitation
of the streamwise length of the domain enforces the interaction between large-scale
structures and near-wall structures, which consequently makes it tractable to extract
a simple cycle of processes sustaining the structures in the present channel flow. It
is shown that the large-scale structures are generated by the collective behaviour
of near-wall structures and that the generation of the latter is in turn enhanced by
the large-scale structures. Hence, near-wall and large-scale structures interact in a
co-supporting cycle.

1. Introduction
The discovery of a self-sustaining process for certain so-called near-wall structures

is a significant result from recent studies of wall-bounded turbulent flows. This process
may be summarized as follows. In the vicinity of the wall, including the viscous and
buffer layers which together constitute the near-wall region, a pair of streamwise
vortices induces a low-speed streaky region, or ‘wall streak’, the instability of which
makes the near-wall region energetic, and regenerates the streamwise vortices. This
cyclic process, which was first recognized as autonomous in plane Couette flow in a
minimal flow unit by Hamilton, Kim & Waleffe (1995) and Waleffe (1997), is thought
to be fundamental in wall-bounded shear flows. Its relevance has been established
by direct numerical simulation (DNS) of filtered flows (Jiménez & Simens 2001), the
discovery of travelling-wave solutions (Waleffe 1998, 2001, 2003; Itano & Toh 2001)
and time-periodic solutions (Kawahara & Kida 2001; Toh & Itano 2003) of the
Navier–Stokes equations. In fact, turbulent intensity in the near-wall region obtained
from DNS with huge computational domains is realized even in the minimal flow unit.
This flow unit, however, contains only the near-wall structures; no other large-scale
structures can exist. This indicates that the self-sustaining process is the fundamental
process in the near-wall region.

As has been previously established by Kline et al. (1967), for example, the mean
length of interval between wall streaks in the spanwise direction (which we term the
mean spacing of the wall streaks) scales with wall units, and is around 100 wall
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units. It is also shown by Jiménez & Moin (1991) that turbulence cannot be sustained
in DNS if the spanwise period of the computational domain is less than 100 wall
units. It may thus also be expected that the near-wall structures themselves, which
consist of a wall streak and a pair of quasi-streamwise vortices associated with the
wall streak, scale with wall units. As the Reynolds number increases, these structures
are restricted to the thin near-wall region, while almost all the rest of the domain
becomes substantially covered by a region consisting of the upper region of the log
layer together with the centre region. Hereinafter, we shall refer to this region as the
outer region. However, in the outer region, turbulent intensity obtained from DNS
with huge computational domains is not as small as that in minimal flow units. Hence,
we would expect there to be another mechanism which could explain why turbulent
intensity is relatively large in the outer region.

One possible phenomenon which may explain the unknown source of turbulent
intensity in the outer region is the existence in this region of streaky structures of
high and low streamwise velocity. A considerable amount of work has been done
on this in recent years. Since these streaky structures scale with the outer length, for
example, half the channel width, they are called large-scale structures or motions,
and were first recognized by Miyake, Kajishima & Obana (1987) and Lee & Kim
(1987) in plane Couette flow. So, turbulent intensity in the outer region consists
not only of three-dimensional fine-scale turbulent fluctuation, but also of relatively
coherent large-scale flows. Moreover, it is surprising that the streaky structures tend
to maintain their location in the spanwise ordinate (which we will hereinafter refer to
as the spanwise immobility of these structures) and elongate in the flow direction to
fill the computational domain even if the streamwise dimension of the computational
domain is extended up to very large scale (see Komminaho, Lundbladh & Johansson
1996). Papavassiliou & Hanratty (1997) suggested that streaky structures in plane
Couette flow are produced by streamwise-oriented large-scale circulations. Although
their simulations were performed at Reτ = 157, and thus not high enough to separate
the near-wall and outer regions, large-scale circulations could be associated with
an inverse cascade, i.e. some merging processes of structures in three-dimensional
wall-bounded turbulent flows. In this paper, we define a large-scale structure to be
the flow consisting of a pair of streamwise oriented large-scale circulations with a
low-speed streaky structure between them in the outer region. Large-scale structures
have also been observed in plane Poiseuille flow in statistical studies and visualization,
although they are slightly shorter, i.e. more three-dimensional, than those in Couette
flow. However, the spanwise extent of the large-scale structure in any case is not
large, and is thought to lie between a factor of 1.3 and 2 times half the channel width
according to Abe, Kawamura & Matsuo (2001) and Jiménez (1998).

Although the self-sustaining process may largely account for turbulent fluctuations
in the near-wall region, the minimal flow unit is a relatively small subspace of the huge
computational domains which are required to simulate real turbulence. In real turbu-
lence, therefore, a huge number of these near-wall structures, interacting and develop-
ing spatially, participate in the production and transfer of turbulent fluctuation toward
the outer region. Our main interest is in understanding the dynamical behaviour of
a group of near-wall structures, and investigating whether this could be associated
with large-scale structures. As a first step, we prevent the near-wall and large-scale
structures from evolving spatially in the streamwise direction and thus restrict the
streamwise length of the computational box to the minimal length in DNS of channel
flow. Because the channel has a relatively large spanwise extent, we will call this box
a ‘streamwise-minimal’ channel. Furthermore, the dynamical behaviour of a group
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of near-wall structures is hereinafter referred to as the collective motion of wall
streaks. In the streamwise-minimal channel-flow turbulence, we also find a large-scale
structure in the outer region, which closely resembles those observed in huge domains.
Our large-scale structure seems to couple tightly with the collective motion of wall
streaks and be sustained autonomously as a whole.

Del Álamo & Jiménez (2001, 2003) reported that the pre-multiplied power spectrum
of the streamwise velocity, which characterizes the large-scale structure, decomposes
into two components: quasi-isotropic modes of relatively short (but long enough)
streamwise length scales and long deep modes. The latter modes are extremely long
(maybe infinite) in the streamwise direction and penetrate deeply into the near-wall
region. They suggested that the latter modes interact with the near-wall region. It
will be seen that our large-scale structures found in the present study in streamwise-
minimal channels are dominated by modes with kx =0, i.e. of infinitely long streamwise
length. We will conclude, therefore, that our large-scale structure corresponds to their
long deep modes and thus reflects some properties of the large-scale structure observed
in real turbulence. Thus, since the streamwise-minimal channel may accommodate
a large-scale structure, the collective motion of wall streaks and their interactions
as well as the self-sustaining processes of individual near-wall structures, the studies
contribute significantly to the elucidation of real wall-bounded turbulence.

In the present approach, after some comments on the numerical method and
parameters used in the present work, we will show that large-scale structures can exist
even in the streamwise-minimal channel used in this study. We will then propose a
mechanism for the sustenance of a large-scale structure focusing on the interaction
between a large-scale structure and near-wall structures. In the mechanism proposed,
the large-scale structure directly interacts with the near-wall region, without any
intermediate processes. It should, of course, be noted that our proposed mechanism is
just one possibility. Since our channel is a subspace involved in huge domains, other
mechanisms, such as that proposed by Adrian, Meinhart & Tomkins (2000) in which
a hierarchy of horseshoe vortices with large streamwise-scale constructs a large-scale
structure, may also be important in more realistic cases.

2. Streamwise-minimal channel
The numerical scheme we used to simulate channel flow is the same as used in

Itano & Toh (2001), which is based on that of Kim, Moin & Moser (1987). The
origin of the coordinate system is taken on the midplane of the channel with the
x, y and z axes in the streamwise, wall-normal and spanwise directions, respectively.
The no-slip boundary condition is imposed at the top (y = +h) and bottom (y = −h)
walls, where h is half the channel width. The flow is driven by constant streamwise
volume flux per unit spanwise length Q. We define the characteristic velocity Uc as
3Q/4h; for laminar Poiseuille flow, Uc is just the centreline velocity. In the present
work, we fix the Reynolds number based on Uc, h and the kinematic viscosity ν at
9000 and 3000. In order to guarantee the total computational time, T , is long enough
for the statistical convergence of turbulent flow in our domain, we confirmed that the
relative error of the time average of wall friction defined as |〈f 〉t − 〈f 〉T |/〈f 〉T is less
than 0.5% for any t > T/2, where

〈f 〉t =
1

t

∫ t

0

ν
∂U

∂y
(t ′, y = ±h) dt ′.
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Figure 1. (a) Mean streamwise velocity of the present channels in wall units. Dashed lines
are U+ = 2.5 log η+ + 5 and U+ = η+, where η is the distance from the wall, η = h − |y|.
(b) Turbulent intensity profiles. Thick curves correspond to streamwise (solid), wall-normal
(dashed), and spanwise (dotted) velocity profiles of Re= 9000 (Reτ = 349). Thin curves
correspond to those of Re= 3000 (Reτ = 137).

Re Reτ L+
x L+

z

Minimal flow Jiménez & Moin (1991) 2000 (300) (100)
3000 (250) (110)
5000 (400) (80)

Jiménez & Pinelli (1999) 4500 201 360 105
9000 428 448 128

18 000 633 397 113

Large-scale structure Moser et al. (1999) 180 2270 756
395 2560 1250
590 3720 1840

Del Álamo & Jiménez (2001) 185 6974 2320
550 13 800 6910

Abe, Kawamura & Matsuo (2001) 640 4020 12 100

Present work 9000 349 384 833
3000 137 259 518

Table 1. Parameters used in several past studies.

The Reynolds number based on the friction velocity, Reτ = Uτh/ν, where Uτ =
√

〈f 〉T ,
is 349 and 137 for cases of Re= 9000 and 3000, respectively.

As seen in figure 1(a), the empirical law of the wall and log-law velocity profile
whose description has been obtained by many workers (for example, see Schlichting
1979), both appear to offer good approximations for both cases of Re = 9000 and 3000.
However, in the Re = 3000 case, Reτ is less than 180, the critical Reynolds number
at which turbulent channel flow is free of the obvious low-Reynolds-number effect
pointed out by Moser, Kim & Mansour (1999). We can see that the apparent log-law
in the Re= 3000 case has a larger intercept than in the Re= 9000 case. Moreover,
as seen in the next section, a large-scale structure is not remarkably distinct from
near-wall structures in the Re= 3000 case. These suggest that the Reynolds number
seems to be slightly too small for the outer region to develop sufficiently.

Table 1 summarizes the Reynolds numbers and dimensions of computational
domains which were used in several earlier studies. In the present work, the streamwise



Interaction between a large-scale structure and near-wall structures 253

length of our channel is set to be approximately minimal by reference to the domain
sizes of the minimal flow units used by Jiménez & Moin (1991) and Jiménez &
Pinelli (1999). Thus, it is obvious that the streamwise length of our domain, Lx , is
much shorter than that used in the earlier studies which suggested the existence of a
large-scale structure in the turbulent channel flow.

On the other hand, the spanwise extent of the domain is relatively wide; since it
is more than 500 wall units, at least more than five wall streaks could survive in the
near-wall region in our domain. The spanwise extent of the domain, Lz, is 2.39h and
3.78h for Re = 9000 and 3000, respectively. In both cases, Lz exceeds the critical value,
2h, necessary for a large-scale structure to exist in the outer region, as described by
Jiménez (1998).

Figure 1(b) shows the turbulent intensity obtained for our channel. Note that the
peak value of the turbulent intensity of streamwise velocity fluctuation is somewhat
larger than that obtained from DNS with huge domains; for example, Moser et al.
(1999) found turbulent intensity to vary between 2.6 and 2.8 for 180 <Reτ < 590. This
difference also exists in comparison with the minimal flow as described by Jiménez &
Pinelli (1999). Thus, the large peak value is probably due to our domain size; the
large spanwise extent of our domain allows large-scale structures to exist in the outer
region, while the short streamwise length of our domain may encourage increased
interaction between near-wall structures and large-scale structures.

In fact, turbulent intensity in the centre region of our domain lies between those
obtained for the minimal flow unit and huge domains, especially regarding the
intensity of the spanwise velocity. This suggests that our channel contains something
other than near-wall structures, although our channel cannot completely reproduce
turbulent flow in huge domains.

3. Large-scale structure
The pre-multiplied power spectra have been often used to suggest the existence

of large-scale structures in channel flow, e.g. Jiménez (1998) or Abe et al. (2001).
Specifically, we define the pre-multiplied power spectra as follows:

φff (kz)|η = kzEff (kz, y)

/
max(kz)∑

kz=2π/Lz

Eff (kz, y),

Eff (kz, y) =
1

T Lx

∫ T

0

∫ Lx

0

(|fkz
(x, y, t)|2 + |f−kz

(x, y, t)|2) dx dt,

where fkz
(x, y, t) is the Fourier coefficient for a spanwise wavenumber kz of velocity

component f (x, y, z, t), f = u, v, w and distance from the wall η = h − |y|. We use
pre-multiplied spectra φ(kz) ≡ kzE(kz) so that areas under the curve in log–linear plots
correspond to the actual energy content, i.e. E(kz) dkz = φ(kz) d(ln kz). Figure 2 shows
pre-multiplied power spectra obtained for the present streamwise-minimal channels.
The characteristic length giving the spectrum peak is dependent on distance from
the wall and is thought to correspond to the spanwise scale of a relatively dominant
structure at each distance in the flow.

In both the cases, Re= 9000 and 3000, φuu and φww at η+ =5 peak at approximately
λ+

z = 100, which corresponds to the accepted mean spacing of the wall streaks in the
near-wall region. With increasing η in both cases, the peaks move to a longer
wavelength corresponding to the outer length. However, in the Re =3000 case, the
value of the spectral peak monotonically decreases with increasing η. This suggests
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Figure 2. Pre-multiplied power spectrum, φ(kz), as a function of λz = 2π/kz. (a) and (b), φuu;
(c) and (d), φvv; (e) and (f ), φww . (a), (c) and (e), for Re =9000 (Reτ =349); (b), (d) and
(f ), for Re= 3000 (Reτ = 137). In both cases, increasing distance from the wall, η = h − |y|,
corresponds to a rightward shift towards the long-wavelength end of the spectrum. All the
spectra are normalized to unit area under the curve in the log–linear plots, to emphasize their
frequency content.

that, for this case, the large-scale structure has not separated from the near-wall
structures, that is, there is an insufficient development of the outer region in this case.

Compared with the spectra of u and w, the spanwise wavelength of the peak of
φvv is half of the other two, in the near-wall region; this was considered by Kim
et al. (1987). They investigated the spanwise two-point autocorrelations of velocity
components and found that the minimum of the spanwise autocorrelation Rvv(z) of
wall-normal velocity v is at �z+ � 25 which is half of the separation of that of the
streamwise velocity. They claimed that this spanwise characteristic separation of
Rvv(z) is consistent with the mean diameter of the streamwise vortical structures.



Interaction between a large-scale structure and near-wall structures 255

Thus, it is not surprising that the spanwise length of the peak of φvv differs from that
of the near-wall structure; we argue that this is a direct consequence of no-slip and
incompressibility in the following. Suppose that the flow near the wall is independent
of the streamwise direction and can be described as

v(η, z) ∼ (v1e
iκz + v2e

i2κz)η2 and w(η, z) ∼ (w1e
iκz + w2e

i2κz)η, (3.1)

where λz =2π/κ is taken as the most energetic spanwise wavelength in the near-wall
region, λ+

z =100 in wall units (λ+
z = λzUτ/ν). Exploiting the incompressibility, we ob-

tain φvv(κ)/φvv(2κ) ∼ κ |v1|2/(2κ |v2|2) = κ |κw1/2|2/(2κ |2κw2/2|2) = |w1/w2|2/8 and
φvv(κ)/φvv(2κ) ∼ φww(κ)/φww(2κ)/4 because φww(κ)/φww(2κ) ∼ |w1/w2|2/2. Since φww

(κ)/φww(2κ) ≈ 3 is obtained from figure 2(e) and thus φvv(2κ) > φvv(κ), we find that
φww(kz) peaks at λ+

z = 100, but φvv(kz) instead peaks at 50. (In fact, comparing results
with the full numerical solution we were able to see that the two-mode approximations,
(3.1), appear to adequately capture the leading-order behaviour of the solutions.)

In this section, we have shown that the pre-multiplied power spectra of streamwise
and spanwise velocities have two specified peaks corresponding to the mean intervals
of near-wall structure in the near-wall region and large-scale structure in the outer
region. These characteristics have been also reported in many studies using DNS with
a more realistic huge channel, for example Jiménez (1998). The similarities between
the streamwise-minimal channel and a huge channel suggest that the former contains
a large-scale structure quite close to that in the latter. If this is so, we will then be
interested in what makes a large-scale structure and, how the large-scale structure
contributes to turbulence, in the streamwise-minimal channel.

4. Co-supporting cycle
The streamwise-minimal channel allows for only one near-wall and one large-scale

structure with respect to the streamwise direction. This artificial restriction inhibits
some of the rich spatio-temporal properties observed in huge domains, for example,
the spatial growth of structures and the interaction between structures aligned in
the streamwise direction (Adrian et al. 2000). Nevertheless, this simplified system
still appears to include fundamental dynamics of both the large-scale structure and
near-wall structures.

The structures interact with each other while moving around in a streamwise cross-
section and repeating their own dynamical processes. Here, in order to understand
the dynamics of the structures as a whole, we represent the location of a near-wall
structure or a large-scale structure by the spanwise position of local minima of the
streamwise velocity, ζ (t, η+), at η+ = 5 (near-wall region) or 200 (outer region),
respectively. The position ζ is defined as follows:

∂u2D

∂z
(t, y, z) = 0,

∂2u2D

∂z2
(t, y, z) > 0, u2D(t, y, z) < U (y) at z = ζ (t, η+),

where

u2D(t, y, z) =
1

Lx

∫ Lx

0

u(t, x, y, z) dx, U (y) =
1

T Lz

∫ T

0

∫ Lz

0

u2D(t, y, z) dz dt.

Hereinafter, the area in the (y, z)-plane satisfying u2D <U (u2D > U ) is called the
low-speed (high-speed) zone. In figure 3, we plot time evolution of the spanwise
location of all the local minima in the near-wall and outer regions, which allows
us to trace the spanwise movement and generation processes of both near-wall and
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Figure 3. The time evolution of the spanwise locations of low-speed regions, which are
identified as points satisfying ∂u2D/∂z = 0 and ∂2u2D/∂z2 > 0 in the low-speed zone u2D <U .
(a) the near-wall region, η+ = 5, (b) in the outer region, η+ = 200, in the lower half domain
(−h<y < 0) in the Re =9000 (Reτ = 349) case.

large-scale structures. In fact, the characteristic spanwise wavelength λ+
z at the peak

of φuu mentioned in the previous section finds reasonable agreement with the mean
spanwise interval between two adjacent minima; as may be seen from the figure,
�ζ+ ≈ 100 and 400 for η+ = 5 and 200, respectively.

Here we adopted the ancillary condition u2D(t, y, z) <U (y) to pick out low-speed
zones. Even in the high-speed zones, local minima can exist. However, such local
minima are not clear curves corresponding to near-wall structures, but scattered
points or very short segments as shown in figure 7 in the Appendix. This means
that, in the high-speed zones, dominant or matured near-wall structures rarely exist.
Nucleation of another near-wall structure by the splitting of a near-wall structure
seems to occur but is rare. Therefore the main mechanism of nucleation of near-wall
structures seems to be some instability.

From figure 3(a), we can see that the branches may be classified into two types:
dominant branches, which survive for a relatively long time, and weak branches. As
time elapses, weak branches are successively merged into a few dominant branches in
almost all of the merging events in the near-wall region, while some weak branches
emerge from structure-free areas. The branches in figure 3(a) are reminiscent of rivers
in a map of a mountainous area and thus we call the region where branches gather a
‘valley’ and the structure-free region where branches emerge a ‘watershed’. It should be
noted that a group of loci of minima of u in figure 3(b) appears to be located always
above a long-lived branch in figure 3(a), while a watershed in figure 3(a) separates
two adjacent groups of loci of minima of u in figure 3(b). In addition, it is worth
remarking there is apparently some scale similarity between figures 3(a) and 3(b),
if we regard groups of loci of minima in figure 3(b) as curves. Note that in the near-wall
region, each branch denotes a single near-wall structure, while in the outer region, a
group of loci of minima of u represents a single large-scale structure. The dynamics
of the large-scale structures and near-wall structures in the streamwise-minimal
channel may be described as follows (see figure 4). Immature near-wall structures
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Figure 4. (a) Schematic view of a snapshot in our channel in a z–y cross-section, where
three elementary processes of the co-supporting cycle are described. Thin solid curves indicate
contours of u2D in the outer region, each bulge of which corresponds to the low-speed region
of a large-scale structure. The circulation of a large-scale structure is represented by thick
dashed curve. Shaded regions near the walls denote wall streaks. (b), (c) Snapshots of flow
in the Re= 9000 (Reτ = 349) case in a z–y cross-section at t = 120 and 140, respectively. The
vector field indicates (w2D, v2D). The shaded region indicates u2D < 0.7Uc and contour levels
are 0.6Uc, 0.5Uc, . . . , 0.1Uc . A concentrated eruption follows a merging event of near-wall
structures A and B in (b).

are continually generated through a local instability near a watershed between two
adjacent large-scale circulations and slowly move toward either of the two. Moreover,
a dominant near-wall structure continually attracts and merges weaker structures into
itself, beneath the low-speed region of a large-scale structure. These facts suggest a
tight coupling between a large-scale structure and near-wall structures, which consists
of three elementary processes described below (see figure 4a).

(i) One of the two circulations of a large-scale structure induces the near-wall
structures to move in the spanwise direction toward the area under the low-speed
region of the large-scale structure.

(ii) Generally, when two near-wall structures merge, a concentrated eruption†
occurs which causes an influx of fluid from the near-wall region into the outer region.
Such a merging event is seen in figures 4(b) and 4(c). The spanwise location of
these eruptions tends to be reasonably immobile. In our simulations, a concentrated
eruption appears to be stronger than a burst which occurs as part of the self-sustaining

† The term ‘eruption’ is used for blowup occurring through the merging process of near-wall
structures and ‘burst’ for blowup as a part of SSP of a single near-wall structure. The eruption
often occurs and thus is robust. This may be confirmed in some animations at the web:
http://www-kyoryu.scphys.kyoto-u.ac.jp/movies/.
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Figure 5. Co-supporting cycle of a large-scale structure and near-wall structures.
SSP, self-sustaining process; NWS, near-wall structure.

process of a near-wall structure. The concentrated eruption also brings about strong
suction from both sides which acts to maintain the large-scale circulation, moreover,
through drawing in fluid with lower streamwise speed from the near-wall region it
also acts to maintain the low-speed region of the large-scale structure.

(iii) There is a watershed, a separation region close to the wall formed by the
part of one of the circulations of the large-scale structure, in which fluid is directed
towards the channel wall. In these regions, new wall streaks are created continually
through some instability.

The coupling with the near-wall structures through the three processes above
probably enables the large-scale structure to survive (see figure 5). However, in the
cycle, the large-scale structure is not just passive, but active enough to contribute
to the generation, spanwise-movement and merger of near-wall structures, which
re-activate the large-scale structure itself. Therefore, we denote the whole cycle as a
‘co-supporting cycle’ of a large-scale structure and near-wall structures, to distinguish
this from the self-sustaining process of a single near-wall structure.

Some further comments should be made regarding this co-supporting cycle. First,
a sequence of eruptions in the cycle tends to stay around a fixed position in z for
a relatively long time in comparison with the period of the self-sustaining process.
To quantify the immobility of large-scale structures, we introduce an autocorrelation
function of velocity components and then define the correlation time as follows:

C[g; y, τ ] =
〈ĝ(y, z, t)ĝ(y, z, t + τ )〉

〈ĝ(y, z, t)2〉 , (4.1)

where g is one of velocity components u, v and w,

ĝ(y, z, t) = g2D − 〈g〉, g2D =
1

Lx

∫ Lx

0

g(x, y, z, t) dx

and

〈G〉 =
1

T LxLz

∫ T

0

∫ Lx

0

∫ Lz

0

G(x, y, z, t) dx dz dt

for an arbitrary function G. The average time T taken here is sufficiently large so
that C[g; y, τ ] converges. With C[g; y, τ ] the correlation time T g(η) of g at distance
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Figure 6. Correlation time of velocity against distance from the wall in wall units is
obtained in the Re= 9000 (Reτ = 349) case. u (solid), v (dashed), w (dash-dotted).

η from the wall is defined as

T g(η) =

∫ τ0

0

C[g; y, τ ] dτ, (4.2)

where τ0 is the smallest τ satisfying C[g; y, τ ] = 0.05, and η = h − |y|. Figure 6 shows
T g(η) for g = u, v and w. T u(η) achieves the maximal correlation time around η+ ≈ 200,
which suggests large-scale structures are more immobile in the spanwise direction than
near-wall structures. It should also be noted that T v(η) seems to be similar to T u(η).
This is consistent with our observation in which large-scale structures are sustained
by eruptions from the near-wall region.

Secondly, the spanwise extent of the low-speed region of a large-scale structure
is of the order of the spanwise extent in which the suction caused by the eruption
influences the near-wall structures. Hence, the circulation of a large-scale structure
described in the co-supporting cycle does not necessarily cover the entire channel
width, for example circulations shown around the right-hand corner in figure 4(a).

5. Concluding remarks
In this paper, we have shown that large-scale structures exist even in a streamwise-

minimal box whose streamwise dimension is confined to the minimal length required
for the sustenance of turbulence. The large-scale structure of the present study involves
two counter-rotating large-scale circulations and a streak-like low-speed region. Large-
scale structures are coupled tightly with near-wall structures and sustained by their
direct interaction. We have therefore called this sustaining process of a large-scale
structure a co-supporting cycle.

We investigated the time evolutions of the large-scale structures and the collective
motion of wall streaks by projecting them onto the streamwise cross-section, because
the streamwise-minimal box inhibits their spatial evolutions in the streamwise direc-
tion. In the near-wall region, more than five wall streaks can exist simultaneously and
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each of them repeats the self-sustaining cycle (of the order of 10 unit times) indivi-
dually like a single wall streak in the minimal flow unit at low Reynolds number. As
seen in figure 3(a), near-wall structures move around in the spanwise direction and
form the valley and watershed structure as a whole owing to some local instability of
wall streaks.

When an interval between adjacent (low-speed) wall streaks of near-wall structures
exceeds some critical length of the order of 100 wall units, a new wall streak tends to
emerge; inversely, a weak wall streak tends to be merged into a dominant wall streak
when the interval becomes shorter than another critical length, also around 100 wall
units.

This collective motion of wall streaks is coupled directly with large-scale structures
without any intermediate structure. In fact, both the nucleation and annihilation of
near-wall structures are linked with large-scale circulations. Near-wall structures are
created around watersheds and carried sideways into valleys by large-scale circula-
tions; matured near-wall structures die away in the valley bottom by merging with
each other and feeding the large-scale circulations in turn.

The near-wall structures gathered around a valley by a large-scale structure are
regarded as a spanwise modulation in an array of near-wall structures. We believe
that the array of near-wall structures may correspond to a spatio-temporally periodic
solution which would be connected to periodic solutions or travelling-wave solutions
obtained in a minimal flow unit at low Reynolds numbers. We could imagine that
this spanwise modulation developing into a large-scale eruption is triggered by some
modulational instability of an array of near-wall structures and then the developed
eruption directly drives large-scale structures.

In the co-supporting cycle, large-scale structures and near-wall structures interact
directly with each other and sustain themselves. In our simulations, though large-
scale structures exist, the value of Reynolds number used is not so high that the
scale separation between large-scale structures and near-wall structures is significant.
This weak scale separation might allow the direct coupling between them without
intermediate processes. As a generation mechanism of large-scale structures, ‘inverse
cascade’ is often referred to because it is based on local interactions between adjacent
different scales and thus holds even at high Reynolds numbers. The ‘inverse cascade’,
however, should occur both in scale and in space, i.e. turbulence fluctuation produced
around the buffer layer should be transferred into the centre region. In addition,
through this ‘inverse cascade’ energy is not conserved because at each height energy is
transferred toward the dissipation range via normal cascade. A concrete mechanism
satisfying these features has not been proposed so far. The co-supporting cycle might
not be the main generation mechanism of large-scale structure in real turbulence, but
it may perhaps be expected to perform an important role.

We restricted the streamwise extent of the box to the minimal. Under this restriction
and the periodic boundary condition, large-scale structures, which otherwise grow
spatially and are advected faster than near-wall structures, are forced to continue to
interact with the near-wall structures that have much shorter time and length scales
than large-scale structures. The enhancement of turbulent intensity observed around
the buffer layer is probably caused by this strong coupling. This situation seems to be
artificial, however, as reported by Del Álamo & Jiménez (2003), the long deep mode,
which is extremely long or even infinite in x, interacts with the near-wall region in huge
computational boxes. In the streamwise-minimal box, large-scale structures are dom-
inated by the two-dimensional modes with kx = 0, and these modes must correspond to
the long deep mode. Therefore, the co-supporting cycle is more realistic than expected.
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Figure 7. The time evolution of the spanwise locations of low-speed regions in the high-speed
zone u2D >U . The locations are identified as points satisfying ∂u2D/∂z = 0 and ∂2u2D/∂z2 > 0.
(a) The near-wall region, η+ =5, (b) in the outer region, η+ = 200, in the lower half domain
(0<z < 0.5Lz and −h<y < −0.5h) in the Re =9000 (Reτ =349) case. ζ+ (y-axis) is marked
with 100 wall units.

The relatively short spanwise extent of the present computational domain, which is
much longer than the mean spacing of the wall streaks, is minimal for the existence of
large-scale structures. Thus, this spanwise restriction also limits the spanwise motion
of large-scale structures in the same manner as the minimal flow unit prevents near-
wall structures from moving in the spanwise direction. This seems to lead to the
success in extracting the co-supporting cycle.

This work has been partially supported by Grant-in-Aid for Science Research on
Priority Areas (B) from the Ministry of Education, Culture, Sports, Science and
Technology of Japan. Finally, the authors would like to express their cordial thanks
to Dr D. P. Wall and referees for improving the manuscript.

Appendix. Structures in high-speed zones
On the basis of the observation of the time evolution of the spanwise locations

of low-speed regions, we have proposed the co-supporting cycle. The locations have
been identified as local minimum points of u2D in low-speed zones u2D <U . We
would expect the ancillary condition u2D >U to exclude a certain structure standing
underneath a high-speed zone so that we could conclude that near-wall structures are
generated from the ‘structure-free’ regions. Figures 7(a) and 7(b) are the counterparts
of figures 3(a) and 3(b), respectively. In these figures, the pattern of generation and
spanwise movement of the near-wall structures in high-speed zones u2D >U is less
coherent than that in low-speed zones u2D <U .
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